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The author has analyzed the equations of flow at large Reynolds number over thin short 
wings. A regular solution has been constructed for vortex-free flow, valid in the linear 
approximation in the small parameters: angle of attack and wing thickness. It is shown 
that the three-dimensional boundary layer problem reduces in this case to a set of two-dimen- 
sional problems. The necessary equations are given and the analysis is shown. In a compari- 
son with experimental data computed results are shown for laminar and turbulent boundary 
layers on a triangular wing. The author has investigated some special features of flow on 
a wing with a bend in the leading edge, accounting for two Reynolds number approximations. 
The author gives the basic relations and example calculations for a triangular wing. 

i. Let a wing of thickness ~0, length b0, and chord length 2s o be set at a small angle 
of attack ~ in a uniform gas stream with density p=, pressure p~, enthalpy h~, velocity u~, 
viscosity p~, thermal conductivity k~, Mach number M, Reynolds number Re = p~u~b0/u~ , and 
Prandtl number Pr. The wing surface is given in a rectangular coordinate system XYZ (Fig. i) 
by the equation Y = ~F(X, Z). The coordinates Y and Z in the transverse section plane are 
referenced to s and X is referenced to b 0. Assuming that 

= 10/b0<<1, 6 = ~0/b0<<i, T = 6/~<<I,: 8 = ~/~<<I,~ ~Re>>1, 

we seek a solution of the flow equations in the Prandtl approximation (separately in the 
outer inviscid region and in the boundary layer) using the method of perturbations. With the 
given boundaries the outer region flow is described by slender body theory [i]. The short- 
coming of this solution is the presence of singularities in the vicinity of the wing edge. 
To obtain a regular solution in this paper we use the method of [2, 3], based on constructing 
a local solution near the edge, which is matched with the slender body solution. All the 
relations for the outer region are analytical in form, which eases the analysis considerably. 

The solution of the boundary layer equations is also found by the method of matched 
asymptotic expansions [4, 5]. On the main part of the wing surface the general three-dimen- 
sional problem is reduced to a sequence of two-dimensional problems by introducing an addi- 
tional unknown. In the vicinity of the leading edge the flow is described by the equations 
for a wing in shear flow [6]. 

With this technique one can obtain a solution of the flow equations in the following 
Reynolds number approximation. Some special features of this problem have been studied for 
a laminar boundary layer on a wing with a discontinuity in its leading edge. 

In slender body theory the flow over a wing is described by the potential ~' which can 
be represented in the form [I] 

~, = bou~{X ~_ X2[~(y, Z; X,  ~, e) + ~o(X, T)] + 0(~ 4 In ~ X)}, ( 1 . 1 )  
X 
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where  ~ = ] M : - - t ] 1 / 2 ;  S(X) = 2~ ~ A(X, Z)dZ i s  t h e  t r a n s v e r s e  s e c t i o n  a r e a  o f  t h e  wing ;  2A = 
--Z 

F 1 + F2; F 1 and F 2 a r e  b r a n c h e s  o f  t h e  t w o - v a l u e d  f u n c t i o n  F(X, Z) c o r r e s p o n d i n g  t o  t h e  u p p e r  
and  l o w e r  wing s u r f a c e s .  We s h a l l  a s sume  t h e  wing t o  be  s y m m e t r i c a l  r e l a t i v e  t o  t h e  p l a n e  
Z = O. The e q u a t i o n s  Z = s  Y = ~C(X, s g i v e  t h e  p o s i t i o n  o f  t h e  wing l e a d i n g  e d g e ,  and 
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the equations Y = ~C(X, Z) = ~(F l -- F2)/2 give the position of mean s u r f a c e .  The perturbation 
p o t e n t i a l  q~ i s  f o u n d  a s  a s o l u t i o n  o f  t h e  t w o - d i m e n s i o n a l  L a p l a c e  e q u a t i o n  i n  t h e  YZ p l a n e  
with a linearized non-penetration boundary condition [i]. We write the flow parameters in 
t h e  f o r m  

l 

~,= + 8(12--Z2)~/2-t- -~ Cx (X, ~) In ]/i/-z)!(l+'~) +]/(l@Z)(l~) d~ + 

l 

+-~ 
- - l  

- �9 V z ~ - ~ w , = - + - ( F - - Z  ~) ~/~ - - ~ Z + - - f f  Cx ~ d~ + - ~  ~ +  

+ o [(~ + 0~], (1 .2)  

Axd~ 
t ~ - - Z l  

u~ = i + ~ (~eX + % x )  = t - -  %2p + 0 (iA In 2 ~), 

Ve = "~ (Cx ~ Ax) + 0 [(s + "r)2]. 

Here and below the index e denotes inviscid flow functions on the wing surface, a superscript 
refers to the upper surface, and a subscript to the lower surface, the projection of the u e 
velocity vector on the X axis are referenced to u~, the components of the velocity vectors v e 
and w e on the Y and Z axes are referenced to lug, and the pressure perturbations p are refer- 
enced to Ipmu~. The first terms in the expressions for the potential ~iand the w~locity w e 
relate to flow over a flat plate, the second terms account for the curvature of the mean 
surface, and the third terms relate to the thickness. The solution of Eq. (1.2) has a sin- 
gularity on the leading edge, and we treat the flow in that vicinity separately. 

In the leading edge Z = s we fix a system of orthogonal curvilinear coordinates xyz 
(Fig. i), where x is measured along the edge, y along the normal to the mean surface, z is 
measured along the tangent to the mean surface perpendicular to the edge, y and z are refer- 
enced to ~0, and x is referenced to b 0. In the framework of slender body theory the angle 
Xz of inclination of the edge relative to the X axis is small: %1 = ~ = %Ix~uO(%9<<1, and 
the angles of inclination of the mean surface relative to the plane Y = 0 are also small. 
Therefore the velocity vector components, referenced to u~, along the edge are U~ = cos Xz = 
1 + 0(12), and in the direction perpendicular to it the component is W~ = sinxz = i$ + 0(13). 

For a blunted edge the characteristic dimension of the special region is referenced to 
s and the radius of curvature r0(x) ~ 1 of the nose profile of the wing section is a plane 
orthogonal to the edge. In this region the wing surface, to an accuracy within a higher 
order of smallness relative to r0, is approximated by the parabolic surface y = (2r0z) z/2 = 
r0o [o is the parabolic coordinate, and z = s - Z + 0(12)]. The derivatives of the flow 
functions in the yz plane are on the order O(r~ l) ~ i, and along the edge they are 0(i). 
Therefore the flow in the region z = O(r 0) is described by a nonlinear two-dimensional equa- 
tion of the potential in the yz plane. The x coordinate enters only into the boundary con- 
ditions as a parameter, and the non-penetration condition is satisfied on the parabolic 
surface. For M1 ~ 1 the problem can be linearized and its solution takes the form [2, 7] 

U,  = Uo (x), W~ = W o (x) ~ - % o~) ~/~ ~1 ' H 1 = (1 + �9 ( 1 . 3 )  

Here W e is the component, referenced to lug, of the velocity vector on a parabolic wing pro- 
file in the plane orthogonal to the edge; U e is the velocity along the edge, referenced to 
u~. The functions U 0 and W 0 and the position of the line of outflow s0(x) are found from the 
solution matching conditions (1.2) and (1.3). Putting z = s and letting Z go to 0 in Eq. 
(1.2) and using the formulas for transforming from Z, Y, Z coordinates, we obtain 

where 

Comparing Eqs. 

U~ = u, cos %~ § Xw~ sin %~ = I § 0(~), 

~W, = ue sin %1 -- ~w, cos %t = ~ ~ + zll -- T 8 Z S 

l Z 

I I  : ~ ,J Z2 - -  ~2' I , ,  : "~- V ~2 - -  ~2 
8 

(1.3) and (1.4) as o § ~, we find 

+ 0 (XD, 
(1.4) 

(1 .5 )  
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f-- 
(1.6) 

For a sharp edge we can also construct a regular solution, if E + ~I 2 = 0. Then the 
local solution in an exponentially small vicinity of the edge is found as a solution of the 
problem for a wedge in shear flow y = • [(~0(x) is the semi-vertex angle of the edge], 
and has the form 

U e ~ t,  W e = W ~  j, j ~ o / ( ~ - - ~ o ) .  ( 1 . 7 )  

The effective flow velocity W0(x) is determined from the condition of matching with the solu- 
tion (1.2) in the same way as for the profile [3]. 

2. We seek a solution of the boundary layer equations on the main part of the wing 
surface, where Eqs. (1.2) are valid, in the form of the asymptotic series 

u = up(s, n) + ~lo(S, n, Z) + ~un(s, n, Z) + .... 

= eWl0 + ~Wll -~ "''' (2. I) 

h = h o + ehlo + Thiz + .... P = P0 -~ e01o + ~Pli 2F .... 

= P0 + eP10 + ~Pii + .... k = ko + ekio + ~kli + ... 

Here  s = X - X0; X0(Z) i s  t h e  d i s t a n c e  f rom t h e  p l a n e  X = 0 t o  t h e  l e a d i n g  edge ;  n i s  r e f e r -  
enced  t o  b 0 R e - i / 2  and i s  no rma l  t o  t h e  wing s u r f a c e ;  u i s  t h e  component  o f  t h e  v e l o c i t y  v e c t o r  
on t h e  s e c t i o n  o f  t h e  wing p r o f i l e  by t h e  p l a n e  Z = c o n s t ;  w i s  t h e  component  o f  t h e  v e l o c i t y  
vector in the direction orthogonal to this profile on the wing surface; v is the velocity 
normal to the surface; u is referenced to u~, w is referenced to lug, v is referenced to 
u~Re -I/2, and p, h, ~ and k are referenced to their values in the unperturbed flow. We note 
that in the boundary layer the transverse velocity is of one and the same order, but the perturba- 
tions of the remaining flow functions are larger by order 0(~ -z) than the values in the vor- 
tex-free flow. 

The zero-order approximation to the expansion (2.1) corresponds to flow over a flat plate 
and does not depend on the transverse coordinate. The functions of the first-order approxima- 
tion are subject to a linear system of equations similar to that obtained for a wing of finite 
dimension [4, 5]. Combining the two approximations of Eq. (2.1) the composite solution satis- 
fies the system of equations 

(pU)s + (P@n - -  pw~Xoz "-}- Pq = O, p h ~ i, 

p[(u  - -  wXoz)U~ + vu~ ] = (~u~)~, 

p [(u - -  wXoz) h~ + vhn] --  (y - -  i) M2pu~ = [ k h ~ , [-P-r n]n ( 2 . 2 )  

p(uw~ + vw.) + Pz - -  Xozp~ = (~w~)~, 

p(uq~ -]- vqn) -~ (Pz --  Xozp~)z = (Pq=)=, 
n = 0 :  u = v =  w =  q =  h= = O; n =  oo: u = h = t ,  w = w ~ ,  q = q ~  

(y i s  t h e  a d i a b a t i c  i n d e x ,  and t h e  s u b s c r i p t s  s ,  n ,  and Z d e n o t e  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  
t o  t h e  c o r r e s p o n d i n g  v a r i a b l e s ) .  The f i r s t  a p p r o x i m a t i o n  p rob l em even  f o r  t h e  c o m p o s i t e  
s o l u t i o n ,  r e d u c e s  t o  t w o - d i m e n s i o n a l  i f  we i n t r o d u c e  a new d e p e n d e n t  v a r i a b l e  q ( s ,  n,  Z) = 
~w/aZ, which  i s  in  e s s e n c e  an a d d i t i o n a l  f l ow i n t e g r a l .  The c o o r d i n a t e  Z e n t e r s  Eq. ( 2 . 2 )  as  
a parameter, and from the geometrical characteristics of the surface the equations contain 
only the sweepback angle of the leading edge X such that X0Z = Xtanx = kcotx1 = I/S. With 
an error of O((g + T) 2) the components of the velocity vector u, v, and w along the curvi- 
linear coordinate axes coincide with the components along the Cartesian coordinate axes X, 
Y, and Z. In contrast with the wing of finite size [4, 5] Eqs. (2.2) do not have a longi- 
tudinal pressure gradient, this being of order O(X2), and the flow perturbations are due ex- 
clusively to three-dimensional effects. 

The expansions of Eq. (2.1) and Eq. (2.2) are not applicable in the vicinity of the 
blunted wing leading edge. Using the ordinary procedure for constructing a local asymptotic 
solution [3], one can show that in a region of dimension O(r 0) near the edge with an error 
of O(r 0) the flow is described by the equations 

(pW)~ + tt~ (OV)N = O, p (WHFiUa + VUN) = (~U~)N, 

p ( W H ~ l W a +  V W ~ ) - - H ~ t W ~ W e ~ = ( p W N ) N ,  p ( W / ~ l l h z +  V h N ) - - ( V - - I ) M 2 p U % = ( ~ h . N ) N ,  ( 2 . 3 )  

N =  O: U =  V =  W = h N  = 0 ;  N :  oo: U = h =  t,  W =  We, 
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where N = n//~0; V = v r~0; U and W are referenced to u= and %u=, respectively, along the 
edge and along the tangent to the parabolic profile of the section of the wing by a plane 
orthogonal to the edge. We note that the transverse velocity does not enter into the dissi- 
pation function of the energy equations (2.2) and (2.3), nor into the relation for the tur- 
bulent viscosity ~t- Thus, in the case of gradient models ~t = d(U~ + %2W~)I/2= dUN + 0(~ 2) 
[or ~t = dlun + 0(%2) on the main part of the surface]. This property distinguishes Eq. (2,3) 
from the ordinary equations of theory of a wing shear flow [6]. 

The solution of the boundary layer problem begins with the outflow line o = o0(x), where 
W e = 0, and Eqs. (2.3) reduce to a similarity case. The flow may be both laminar and turbu- 
lent, beginning from the outflow line. The location of transition is given or computed using 
semi-empirical relations. 

The boundary layer equations possess the property of being parabolic, and therefore the 
matching conditions for solutions of Eqs. (2.2) and (2.3) are the initial conditions for Eq, 
(2.2). It is appropriate to formulate these using the matching principle of Kaplan [3]. 
Both solutions exist in the intermediate region r 0 ~ z = r0o2/2 = s$ ~ 1 and are subject to 
the same equations for a thin wing in shear flow, which follow from Eq. (2.3) when 
o + ~ or from Eq. (2.2) when s § 0. The matching conditions for any point s I = r0o~/2 ~ of the 
intermediate region have the form 

U(81, nr Z) = U(ffl, iV, z), h ( ~  n, L9 = h(al ,  N, x), ( 2 . 4 )  

w (s.  n, Z) = [W - ~u] j~=~, q (s~, n, Z) = - [W~ - -  ~g~]/(r0~) I~=o~ 

I n  t h e  c a s e  o f  a s h a r p  l e a d i n g  edge  t h e  f o r m u l a t i o n  o f  t h e  i n i t i a l  c o n d i t i o n s  f o r  Eq. 
( 2 . 2 )  r e d u c e s  t o  s o l v i n g  t h e  w e l l - k n o w n  s i m i l a r i t y  p r o b l e m  o f  l a m i n a r  f l o w  o v e r  a wedge in  
s h e a r  f l o w ,  and t o  a t r a n s f o r m a t i o n ,  s i m i l a r  t o  Eq. ( 2 . 4 ) ,  f rom one c o o r d i n a t e  s y s t e m  t o  t h e  
o t h e r .  

To i l l u s t r a t e  t h e  r e s u l t s  o b t a i n e d  F i g .  2 shows t h e  d i s t r i b u t i o n  o f  t h e  l o n g i t u d i n a l  
f r i c t i o n  c o e f f i c i e n t  Cfx a t  t h e  s e c t i o n  Z = 0 . 0 5  o f  t h e  t o p  s u r f a c e  o f  a t r i a n g u l a r  wing w i t h  
s h a r p  l e a d i n g  e d g e s ,  s w e e p b a c k  a n g l e  o f  X = 7 1 - 5 6 5 ~  l e n g t h  X = 1 / 3 ,  t h i c k n e s s  6 = 0 .0 8 4 3  
(~ = 0 . 2 5 3 )  a t  M = 1 . 5 ,  Re = 107 , and a n g l e s  o f  a t t a c k  a o f  2 and 4 ~ ( c u r v e s , 1  and 2 f o r  
r = 0 . 1 0 5 ,  0 . 2 1 ) .  The a b s c i s s a  i s  X = s / b ( Z ) ,  where  b = 1 - Z i s  t h e  r e l a t i v e  c h o r d  a t  t h e  
s e c t i o n  Z = c o n s t .  I n  t h e  c o m p u t a t i o n s  we u s e d  t h e  C e b e s i - S m i t h  t u r b u l e n t  v i s c o s i t y  model  
and t h e  me thod  o f  [ 8 ] .  Near  t h e  wing edge  t h e r e  were  s e c t i o n s  o f  l a m i n a r  f l o w  (Fig: .  2,  a = 
2 ~ X ~ 0 . 1 5 ) ,  and t h e  l o c a t i o n  o f  t r a n s i t i o n  was t a k e n  f r o m  e x p e r i m e n t  [ 9 ] .  The c o m p o n e n t s  
o f  t h e  v e l o c i t y  v e c t o r  a t  t h e  o u t e r  edge  o f  t h e  b o u n d a r y  l a y e r  w e r e  compu ted  u s i n g  t h e  l i n e a r  
e q u a t i o n s  o f  s l e n d e r  wing t h e o r y  w i t h  t h e  known e x p e r i m e n t a l  p r e s s u r e  d i s t r i b u t i o n  [ 9 ] .  
S p l i n e s  we re  u s e d  t o  m a t c h  t h e  e x p e r i m e n t a l  d a t a  and t h e  compu ted  p r e s s u r e  d e r i v a t i v e s .  The 
method  o f  s t r i p s  ( t h e  d o t - d a s h  l i n e s ) ,  i n  wh ich  t h e  e q u a t i o n s  o f  a p l a n a r  b o u n d a r y  l a y e r  a r e  
s o l v e d  a l o n g  e a c h  s e c t i o n , ,  d i d  n o t  l e a d  t o  an a p p r e c i a b l e  d i f f e r e n c e  i n  t h e  r e s u l t s  f r o m  
t h e  z e r o  a p p r o x i m a t i o n  c a s e  ( b r o k e n  l i n e s ) ,  w h i l e  t h e  c o m p o s i t e  s o l u t i o n  ( s o l i d  c u r v e s )  
a g r e e s  w e l l  q u a l i t a t i v e l y  w i t h  t h e  e x p e r i m e n t a l  d a t a  o f  [9]  ( c i r c l e s ) ,  a l t h o u g h  t h e  p e r t u r b a -  
t i o n  p a r a m e t e r s  a r e  r e l a t i v e l y  l a r g e  i n  t h i s  c a s e .  T h i s  c o n f i r m s  t h e  a b o v e  c o n c l u s i o n  a s  t o  
t h e  i n f l u e n c e o f  t h r e e - d i m e n s i o n a l  e f f e c t s .  
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3. As another example we consider laminar flow over a thermally insulated thin wing 
with a bent leading edge, accounting for the second approximation in Reynolds number for 
Pr = i, = = 0. The wing is a flat plate composed of two triangles such that the wing vertex 
angle is 2X0 = 2X~0, and at the bend point (X~, 0, • the angle between the X axis and the 
edge varies up to X~ = XB~; we note that the wing vertex is also a leading edge bend point. 
The coordinate s is given by the relations 

/X-lZl/~o, IZl<Z~, 
s = ( X _ X I _ ( I Z I -  Zl)/~l, [Zl>Zl" 

In this problem the expansion parameter is ~i = Re-~/~/k, and the zero approximation is de- 
scribed by the similarity solution 

Uo=lo(n), h=to(n) ,  n = l / r ?  h odn=Vsto (n )  (3 .1)  
0 

(f0 and t o are the stream function and the initial enthalpy, and the primes denote differ- 
entiation with respect to q). The planes Z = 0, • for this solution are surfaces of weak 
discontinuities, since 

,,{ U o, z = + o ,, I t/ o, z = z l  - o, 
Uoz=--  2h ~ 1o __t/8o, Z = - - O - -  2h o l~ Z=Z12vO, 

The same discontinuities occur in the enthalpy and the displacement thickness 6* = as I/2 
(a = Re-I/2(1.721 + 1.192(~ -- I)M 2) for Pr = i [i0]). 

The perturbations inserted into the potential flow by the boundary layer of such a wing 
are determined by Eq. (1.2) in which one must put e = C = 0, A = s I/2, �9 = a/X. For a tri- 
angular wing (~0 = ~i = i) we obtain 

@~ = ~ + q~o = ~- V'X O(~) + lnx + -nl + ] / x  t I ~--V R V~' M<t_ 

____ ln(t + ] / ~ ) / ,  (3 .2)  

where ~ = Z / X ;  Q=R(~)+B(--~); B= (I/2)(l -- V t q -  ~ ) ] n [ ~ [ + ] / t + ~ l n ( t + ] / t + ~ ) .  For the 
perturbations of velocities w e and Uze = ~eX there are no singularities on the leading edges, 
apart from the wing vertex X = 0. For M < 1 the function Uze has a logarithmic singularity 
at the trailing edge X = i. In the symmetry plane Z = 0 there is a logarithmic singularity 
in the derivative WeZ, but all the remaining functions are regular. For ~ § 0 we obtain 

] /r '~we~__~lnl~[ ' ~ w , x ~ - - - ~ l n [ ~ ] ,  ~X~l*u,~z~ln[~[--21n2+2, 
2~ 

In the case of a wing'with fractured edges for M > i and X < I 

For X > X I the perturbation potential ~e and the transverse velocity are determined by the 

relations 

- o(VY-VN)Jn(X 

where the primes denote differentiation with respect to the argument, and ~i = (Z + ZI)/(X - 
XI), ~2 = (Z - ZI)/(X - XI). It can be seen that the bend point is the same type of singular 
point as the wing vertex. In the symmetry plane Z = 0 and in the planes Z = +_Z l the deriva- 
tive WeZ has a logarithmic singularity. 
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Using Eq. (3.2) we represent the solution of the boundary layer equation in the next 
Reynolds number approximation for the triangular wing in the form 

( ; ) / '  P ( ! i  t' (~, ~), 

= l - ; ,  p (;)  = (1 - ( l  + ; ) -~/2  _ (1 - ; ) -~ /2 )  in j ; I + In (t + I / T T i )  In (t + V i - ~ - ~ )  
V T +  ; + V i ~ ;  " 

The equations for the functions f, g, and t are obtained from Eq. (2.2) after they are linear- 
ized relative to the zero approximation of Eq. (3.1) and for pu = Pr = I have the form 

f "  = - -  0 , o / 0  / + ~ (1 - -  ~ ) / o / ~  - -  ~B/ 'o / '  - -  D / 0 ,  

t "  = - -  O,5/ot" + ~ (i - -  ~) :'ot{ - -  ~B/ot '  - -  Dto - -  2 (? - -  t) Me/of ', ( 3 . 3 )  
~. # t t r t 

g "  = - -  O,o/og + ~ (1 - -  ~)/og~ + 0,5~ (t + 2 (i - -  ~) Q:;/Q;) (to - - / o g  ) ,  

~ = 0 : / = t = g = / ' = t "  = g'  = 0; ~ =  o o : / = t ' = O ,  g ' = l ,  

where the coefficients B and D are determined by the expressions 

B = 0,5 + (i -- ~)P~/P, D = ~(t -- ~)/~ -- (i -- ~)(~P;/P -- 0,5)/~+ [0,5(2~Q;; - Q:)g - ~Q~g~I/P, 

In the problem considered the variables are separated and one does not require a suppleme ~ 
mentary equation for the function q, since 

q = Wz = (weg')z = (w~g'-- Wei)/X. 

Equations (3.3) were solved using the numerical technique of [ii] for M = 2. Graphs 
of the function f'(~, ~) are shown in Fig. 3, the numbers 1-4 pertaining to ~ = 0,1, 0.5, 
0.7, and 0.9. Figure 4 shows a graphof the function f"(0, r The perturbations of the longi- 
tudinal velocity ull and enthalpy hll, like the functions f' and t', have logarithmic sin- 
gularities in the symmetry plane Z = 0 ($ = i). The nature of the flow in the transverse 
plane is illustrated in Fig. 5, which has graphs of the function w~ = (~r = Q~g'(D, ~). 
It can be seen that for 0 ~ ~ ~ 0.2 the perturbations are transmitted from the edge to the 
plane of symm~etry. For $ > 0.2 in the outer part of the boundary plane, but inside the 
boundary layer there is a region where the transverse velocity is directed in the opposite 
sense. 

4. The external flow model considered in Sec. 1 is simple and allows a visible analyti- 
cal form of representing the solution, but its region of application is restricted to sub- 
sonic and low supersonic flow velocities. The solution for the boundary layer of Eqs. (2.1)- 
(2.3) is valid near sonic speed and also in the hypersonic range of application of the theory 
of small perturbations for the outer flow. 

Thus, for M>>i, MS<<~i~ ML~>O(1),X~<X~<I~ if the shock waves are attached to the 
edges, the following estimates hold [12]: 

p = o 0 ) ,  lh  = o 0 ) ,  p ~ ~ ~ q -~  ~ : ( M ~ )  = ~ ( M ~ .  

F o r  6/(Mk 2) ~ 1 E q s .  ( 2 . 1 )  and  ( 2 . 2 )  a r e  a p p l i c a b l e  t o  d e s c r i b e  t h e  h y p e r s o n i c  b o u n d a r y  l a y e r  
over the entire wing surface. When the shock waves are detached the estimates are different 
[13]: 

p = O(M-D~ h = .O(MD~ p , - ,  w ~-, q : ~  6 M / L  2 = ~ M / ~ ,  
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so that Eqs. (2.1) and (2.2) are valid on the main part of the surface, if 6M/I 2 ~ i. The 
flow near the edge in this case is described by the Euler equations and the boundary layer 
equations in the wing in shear flow approximation. In the intermediate region ~M/I 2 = 0(i) 
the boundary layer on the wing is described by the full equations of the three-dimensional 
boundary layer [13], and for 6M/I 2 ~ i another limiting solution is valid [14]. 

The author thanks A. D. Khon'kin for useful discussions. 
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